Mini Headphone Amplifier


Posted on Feb 22, 2013    6634

SW1 bypasses the crossfeed network. I have reconfigured the original crossfeed schematic so that now the 100k resistor always bridges the bypass switch and thereby reduces any 'crackle' or 'click' or whatever you may call them. Don't omit these 100K resistors as they form a part of the crossfeed network and omitting them would bear undesirable results. Note that R6 and R9 are indicated as 4.53k, however the use of 4.7k resistors will be perfectly adequate in practice.


Mini Headphone Amplifier
Click here to download the full size of the above Circuit.

I chose the NE5532 for this project. Since the source is a PDA's internal DAC, I didn't see the need to use premium opamps. Of course, if it makes you feel better, you can always use higher quality (expensive) opamps. Just make sure the opamp is capable of driving low impedances. LM6171, OPA2134, OPA2132, OPA134 and OPA4134 (dual) are some possible substitutes. It's likely that there are others. IC sockets are therefore a good idea if you have plans to upgrade the opamps. The volume pot should be a linear type and would give, with the 15k resistor in parallel, the benefits outlined in ESP's A Better Volume Control. The crossfeed is on a separate board in the prototype. I mounted it vertically on the main board using hot-melt glue. All the switches, jacks and volume control were also mounted on the enclosure using a hot-melt glue gun. I used generous amounts of hot-melt glue around the bases of all the capacitors as they are more susceptible to lead and track breaking due to vibrations. My prototype uses two 9V alkaline batteries to give 9-0-9V supply. I get around 20 hours of operation at normal portable listening levels. The effect of the demise of a few pairs of alkaline batteries on my wallet has decided me to switch over to rechargeable batteries. A battery charger is now under construction. This amp can also be powered by Project 05 using a 15-0-15V transformer. A 5VA transformer should have oomph enough for...




Leave Comment

characters left:

Related Circuits

  • New Circuits

    .

     



    Top