Subcutaneous Transmitter

  
Inside:
Repository
The Subcutaneous Transmitter (A3013) transmits biometric signals from within the body of a live animal. It is the implantable transmitter component of our Subcutaneous Transmitter System. The A3013 detects biometric signals with flexible 150-mm leads, digitizes them, and transmits them as bursts of 915-MHz radio-frequency power through a 50-mm an
Subcutaneous Transmitter - schematic

tenna. A nearby antenna receives the radio-frequency bursts and records the biometric signals. Within a faraday enclosure, such as our FE2A, the operating range of the A3013 is limited only by the size of the enclosure. Without a faraday enclosure, operating range varies from 25 cm on the eighth floor of an office building in London to 200 cm in a basement laboratory in Boston. We designed the A3013 to monitor EEG in rats. Figure: Encapsulated Subcutaneous Transmitters A3013A-E. Click on image for higher-resolution. The encapsulation consists of an epoxy center with a silicone coating. The wires are silicone-coated stainless steel. The antenna is 7 G— 100 m stainless steel stranded wire. The analog leads are 400- m springs made out of 100- m diameter 302 stainless steel. The bare tips of the leads are tinned with solder. The A3013A transmits 512 samples per second for over nine weeks before its battery runs out. We can turn the transmitter on and off at any time with a magnet, even when the transmitter is implanted in an animal. When turned off, the transmitter will run its battery down in thirty-two weeks. (See Battery Life for more details. ) The A3013 is encapsulated in epoxy and coated with silicone. The resulting encapsulation is inert, water-proof, resistant to vacuum, easy to clean, tough enough to survive unharmed inside an animal for nine weeks, and tolerant of temperatures from ’40 °C to +125 °C. Once the battery...



Leave Comment

characters left:

New Circuits

.