BUK113-50DL

DESCRIPTION

Monolithic overload protected logic level power MOSFET in a surface mount plastic envelope, intended as a general purpose switch for automotive systems and other applications.

APPLICATIONS

General controller for driving

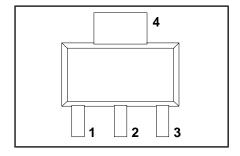
- lamps
- small motors
- solenoids

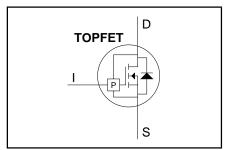

FEATURES

- Vertical power DMOS output stage
- Overload protected up to 125°C ambient
- Overload protection by current limiting and overtemperature sensing
- sensingLatched overload protection reset by input
- 5 V logic compatible input level
- Control of power MOSFET and supply of overload protection circuits derived from input
- Low operating input current permits direct drive by micro-controller
- ESD protection on all pins
- Overvoltage clamping for turn off of inductive loads

QUICK REFERENCE DATA

SYMBOL	PARAMETER		MAX.	UNIT
V _{DS}	Continuous drain source voltage	-	50	V
I _D	Drain current limiting	4	8	Α
P _D	Total power dissipation	-	4	W
T _j	Continuous junction temperature	-	150	°C
R _{DS(ON)}	Drain-source on-state resistance	-	200	mΩ


FUNCTIONAL BLOCK DIAGRAM


PINNING - SOT223

PIN	DESCRIPTION
1	input
2	drain
3	source
4	drain (tab)
	l

PIN CONFIGURATION

SYMBOL

BUK113-50DL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	Continuous drain source voltage ¹	-	-	50	V
I _D	Continuous drain current ²	-	-	self limiting	Α
I ₁	Continuous input current	clamping	-	3	mA
I _{IRM}	Non-repetitive peak input current	t _p ≤ 1 ms	-	10	mA
P_{D}	Total power dissipation	$T_{sp} = 90 ^{\circ}C$	-	4	W
T _{stq}	Storage temperature] =	-55	150	°C
T _j	Continuous junction temperature	normal operation	-	150	°C

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _C	Electrostatic discharge capacitor voltage	Human body model; C = 250 pF; R = 1.5 kΩ	-	2	kV

OVERVOLTAGE CLAMPING LIMITING VALUES

At a drain source voltage above 50 V the power MOSFET is actively turned on to clamp overvoltage transients.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
E _{DSM}	Non-repetitive clamping energy	$T_b \le 25 ^{\circ}C; I_{DM} < I_{D(lim)};$	-	100	mJ
E _{DRM}	Repetitive clamping energy	inductive load $T_b \le 75$ °C; $I_{DM} = 50$ mA; f = 250 Hz	-	4	mJ

OVERLOAD PROTECTION LIMITING VALUES

With the protection supply provided via the input pin, TOPFET can protect itself from short circuit loads. Overload protection operates by means of drain current limiting and activating the overtemperature protection.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{ISP}	Protection supply voltage ³	for valid protection	4	-	V
V_{DDP}	Protected drain source supply voltage	$V_{IS} = 5 V$	-	35	V

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Thermal resistance					
R _{th j-sp}	Junction to solder point	measured to pin 4 solder point	-	12	15	K/W
	Application information					
R _{th j-a}	Junction to ambient	on PCB of fig. 3 on minimum footprint PCB		70 100	1 1	K/W K/W

¹ Prior to the onset of overvoltage clamping. For voltages above this value, safe operation is limited by the overvoltage clamping energy.

² Refer to OVERLOAD PROTECTION CHARACTERISTICS.

³ The input voltage for which the overload protection circuits are functional.

BUK113-50DL

OVERLOAD PROTECTION CHARACTERISTICS

TOPFET switches off to protect itself when there is an overload fault condition. It remains latched off until reset by the input.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Overload protection					
$I_{D(lim)}$	Drain current limiting	$V_{IS} = 5 \text{ V}$	4	6	8	Α
	Short circuit load protection					
E _{DS(TO)}	Overload threshold energy	$V_{DD} = 13 \text{ V}; V_{IS} = 5 \text{ V}$	-	tbf	-	J
	Overtemperature protection					
$T_{j(TO)}$	Threshold junction temperature	$V_{IS} = 5 V$	150	165	-	°C

STATIC CHARACTERISTICS

T_b = 25 °C unless otherwise specified

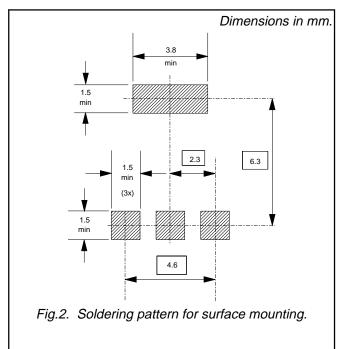
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(CL)DSS}$	Drain-source clamping voltage	$V_{IS} = 0 \text{ V}; I_{D} = 10 \text{ mA}$	50	55	-	V
$V_{(CL)DSS}$	Drain-source clamping voltage	$V_{IS} = 0 \text{ V}; \ I_{DM} = 200 \text{ mA}; \ t_p \le 300 \mu\text{s}; \ \delta \le 0.01$	-	56	70	V
$I_{\rm DSS}$	Off-state drain current	$V_{DS} = 45 \text{ V}; V_{IS} = 0 \text{ V}$	-	0.5	2	μΑ
$I_{\rm DSS}$	Off-state drain current	$V_{DS} = 50 \text{ V}; V_{IS} = 0 \text{ V}$	-	1	20	μΑ
$I_{\rm DSS}$	Off-state drain current	$V_{DS} = 40 \text{ V}; V_{IS} = 0 \text{ V}; T_j = 100 ^{\circ}\text{C}$	-	10	100	μΑ
R _{DS(ON)}	Drain-source on-state resistance ¹	$V_{IS} = 5 \text{ V}; I_{DM} = 1 \text{ A}; \\ t_p \le 300 \mu\text{s}; \delta \le 0.01$	-	150	200	mΩ

INPUT CHARACTERISTICS

 $T_b = 25$ °C unless otherwise specified. The supply for the logic and overload protection is taken from the input.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
V _{IS(TO)}	Input threshold voltage	$V_{DS} = 5 \text{ V}; I_{D} = 1 \text{ mA}$		1.7	2.2	2.7	V
I _{IS}	Input supply current	normal operation;	$V_{IS} = 5 V$	-	330	450	μΑ
			$V_{IS} = 4 V$	-	170	270	μΑ
I _{ISL}	Input supply current	protection latched;	$V_{IS} = 5 V$	-	500	650	μΑ
			$V_{IS} = 3.5 \text{ V}$	-	250	400	μΑ
V_{ISR}	Protection latch reset voltage ²			1	2.2	3.5	V
$V_{(CL)IS}$	Input clamping voltage	$I_1 = 1.5 \text{ mA}$		6	7.5	-	V
R _{IG}	Input series resistance	to gate of power MOS	FET	-	33	-	kΩ

SHADED BOXES


Values shown within shaded boxes are estimated for the objective specification. These will not be fixed until the evaluation of prototype samples.

¹ Continuous input voltage. The specified pulse width is for the drain current.

² The input voltage below which the overload protection circuits will be reset.

BUK113-50DL

MOUNTING INSTRUCTIONS

PRINTED CIRCUIT BOARD

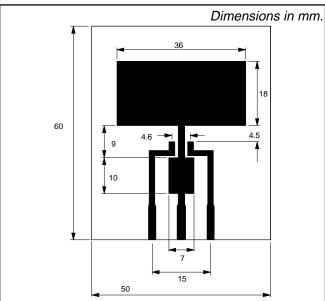
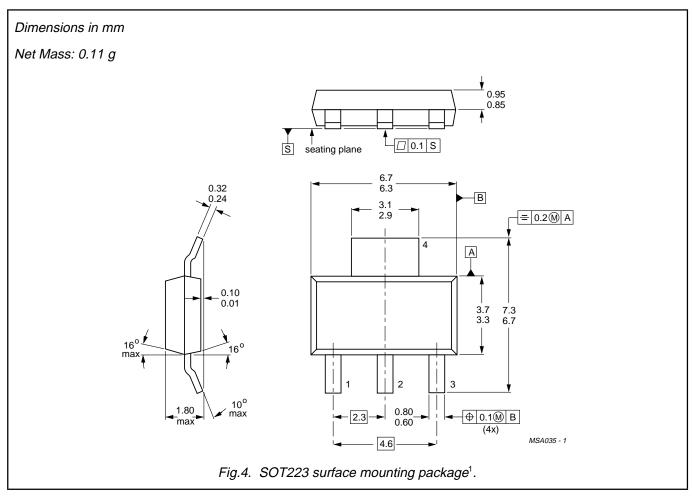



Fig.3. PCB for thermal resistance and power rating. PCB: FR4 epoxy glass (1.6 mm thick), copper laminate (35 μm thick).

BUK113-50DL

MECHANICAL DATA

¹ For further information, refer to surface mounting instructions for SOT223 envelope. Epoxy meets UL94 V0 at 1/8".

BUK113-50DL

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limitin arrealises	

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1996

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.