GAL20V8

High Performance E² ${ }^{2}$ MOS PLD
 Generic Array Logic ${ }^{\text {TM }}$

FEATURES

- HIGH PERFORMANCE E ${ }^{2}$ CMOS $^{\circledR}$ TECHNOLOGY
- 5 ns Maximum Propagation Delay
- Fmax = 166 MHz
- 4 ns Maximum from Clock Input to Data Output
— UltraMOS ${ }^{\circledR}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ Icc on Low Power Device
- 45mA Typ Icc on Quarter Power Device
- ACTIVE PULL-UPS ON ALL PINS
- E² CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 24-pin PAL ${ }^{\circledR}$ Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS — 100\% Functional Testability
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20V8C, at 5ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable $\left(\mathrm{E}^{2}\right)$ floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times ($<100 \mathrm{~ms}$) allow the devices to be reprogrammed quickly and efficiently.
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL20V8 are the PAL architectures listed in the table of the macrocell descriptionsection. GAL20V8 devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor guarantees 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are guaranteed.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

DIP

[^0]LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
1996 Data Book
Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com

Specifications GAL20V8

GAL20V8 ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
5	3	4	115	GAL20V8C-5LJ	28-Lead PLCC
7.5	7	5	115	GAL20V8C-7LJ	28-Lead PLCC
			115	GAL20V8B-7LP	24-Pin Plastic DIP
			115	GAL20V8B-7LJ	28-Lead PLCC
10	10	7	115	GAL20V8C-10LJ	28-Lead PLCC
			115	GAL20V8B-10LP	24-Pin Plastic DIP
			115	GAL20V8B-10LJ	28-Lead PLCC
15	12	10	55	GAL20V8B-15QP	24-Pin Plastic DIP
			55	GAL20V8B-15QJ	28-Lead PLCC
			90	GAL20V8B-15LP	24-Pin Plastic DIP
			90	GAL20V8B-15LJ	28-Lead PLCC
25	15	12	55	GAL20V8B-25QP	24-Pin Plastic DIP
			55	GAL20V8B-25QJ	28-Lead PLCC
			90	GAL20V8B-25LP	24-Pin Plastic DIP
			90	GAL20V8B-25LJ	28-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
10	10	7	130	GAL20V8C-10LJI	28-Lead PLCC
			130	GAL20V8B-10LPI	24-Pin Plastic DIP
			130	GAL20V8B-10LJI	28-Lead PLCC
15	12	10	130	GAL20V8B-15LPI	24-Pin Plastic DIP
			130	GAL20V8B-15LJI	28-Lead PLCC
20	13	11	65	GAL20V8B-20QPI	24-Pin Plastic DIP
			65	GAL20V8B-20QJI	28-Lead PLCC
25	15	12	65	GAL20V8B-25QPI	24-Pin Plastic DIP
			65	GAL20V8B-25QJI	28-Lead PLCC
			130	GAL20V8B-25LPI	24-Pin Plastic DIP
			130	GAL20V8B-25LJI	28-Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user.

There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes is illustratedin the following pages. Two global bits, SYN and ACO, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while the AC1 bit of each of the macrocells controls the input/output configuration. These two global and 16 individual architecture bits define all possible configurations in a GAL20V8. The information given on these architecture bits is only to give a better understanding of the device. Compiler software will transparently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits.

The following is a list of the PAL architectures that the GAL20V8 can emulate. It also shows the OLMC mode under which the devices emulate the PAL architecture.

PAL Architectures Emulated by GAL20V8	GAL20V8 Global OLMC Mode
20R8	Registered
20R6	Registered
20R4	Registered
20RP8	Registered
20RP6	Registered
20RP4	Registered
20 L 8	Complex
20H8	Complex
20P8	Complex
14L8	Simple
16L6	Simple
18L4	Simple
$20 \mathrm{L2}$	Simple
14H8	Simple
$16 \mathrm{H6}$	Simple
${ }^{18} \mathrm{H} 4$	Simple
20 H 2	Simple
$14 \mathrm{P8} 8$	Simple
16P6 18P4	Simple Simple
20P2	Simple

COMPILER SUPPORT FOR OLMC

Software compilers support the three different global OLMC modes as different device types. These device types are listed in the table below. Most compilers have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the software to choose the registeredmode. All combinatorial outputs with OE controlledby the productterm will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. The different device types listed in the table can be used to override the automatic device selection by the software. For further details, refer to the compiler software manuals.

In registered modepin 1 and pin 13 (DIP pinout) are permanently configured as clock and output enable, respectively. These pins cannot be configuredas dedicatedinputs in the registeredmode.

In complex mode pin 1 and pin 13 becomededicatedinputs and use the feedback paths of pin 22 and pin 15 respectively. Because of this feedback path usage, pin 22 and pin 15 do not have the feedback option in this mode.

In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins (pins 18 and 19) will not have the feedback option as these pins are always configured as dedicated combinatorial output.

When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode.

	Registered	Complex	Simple	Auto Mode Select
ABEL	P20V8R	P20V8C	P20V8AS	P20V8
CUPL	G20V8MS	G20V8MA	G20V8AS	G20V8
LOG/IC	GAL20V8_R	GAL20V8_C7	GAL20V8_C8	GAL20V8
OrCAD-PLD	"Registered"1	"Complex"1	"Simple"1	GAL20V8A
PLDesigner	P20V8R	P20V8A		
TANGO-PLD	G20V8R	P20V8C	G20V8C	P20V8C 2
G20V8AS	P20V8	G20V8		

[^1]
Specifications GAL2OV8

REGISTERED MODE

In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions.

Architecture configurations available in this mode are similar to the common20R8 and 20RP4 devices with various permutations of polarity, I/O and register placement.

All registeredmacrocellsshare common clock and output enable control pins. Any macrocell can be configured as registered or I/O. Up to eight registers or up to eight I/Os are possible in this
mode. Dedicated input or output functions can be implemented as subsets of the I/O function.

Registered outputs have eight product terms per output. I/Os have seven product terms per output.

The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

REGISTERED MODE LOGIC DIAGRAM
DIP (PLCC) Package Pinouts

Specifications GAL20V8

COMPLEX MODE

In the Complex mode, macrocells are configured as output only or I/O functions.

Architecture configurations available in this mode are similar to the common20L8 and 20P8 devices with programmablepolarity in each macrocell.

Up to six I/Os are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the I/O function. The two outer most macrocells (pins 15 \& 22) do not have input ca-
pability. Designs requiring eight I / Os can be implemented in the Registered mode.

All macrocells have seven product terms per output. One product term is used for programmableoutput enable control. Pins 1 and 13 are always available as data inputs into the AND array.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

COMPLEX MODE LOGIC DIAGRAM
DIP (PLCC) Package Pinouts

64-USER ELECTRONIC SIGNATURE FUSES

SYN-2704
AC0-2705

Specifications GAL20V8

SIMPLE MODE

In the Simple mode, pins are configured as dedicated inputs or as dedicated, always active, combinatorial outputs.

Architecture configurations available in this mode are similar to the common 14L8 and 16P6 devices with many permutations of generic output polarity or input choices.

Pins 1 and 13 are always available as data inputs into the AND array. The "center" two macrocells(pins 18 \& 19) cannotbe used in the input configuration.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page.

All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has programmable polarity.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

SIMPLE MODE LOGIC DIAGRAM

DIP (PLCC) Package Pinouts

Specifications GAL20V8C

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$
Supply voltage $V_{C C}$
0.5 to +7 V

Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cC}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied

\qquad . -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditionsabove those indicatedin the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature $\left(T_{A}\right)$ 0 to $75^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground \qquad +4.75 to +5.25V

Industrial Devices:

Ambient Temperature $\left(T_{A}\right)$........................... -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL ${ }^{1}$	Input or I/O Low Leakage Current	OV $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathbf{V} \leq \mathrm{VIN} \leq \mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage	Iol = MAX. Vin = VIL or $\mathbf{V I H}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
lOS^{2}	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA

COMMERCIAL

ICC	Operating Power Supply Current	$\mathbf{V}_{\mathrm{L}}=0.5 \mathrm{~V} \quad \mathbf{V}_{\mathrm{H} H}=3.0 \mathrm{~V}$ $\mathbf{f}_{\text {toggle }}=15 \mathrm{MHz}$ Outputs Open	$\mathrm{L}-5 /-7 /-10$	-	75	115	mA

INDUSTRIAL

ICC	Operating Power Supply Current	$\mathbf{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathbf{V}_{\mathrm{H}}=3.0 \mathrm{~V}$ $\mathbf{f t o g g l e}=15 \mathrm{MHz}$ Outputs Open	$\mathrm{L}-10$	-	75	130	mA

[^2]
Specifications GAL20V8C

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

				CO	M	CO	M	COM	/IND	
	TEST	DESCRIPTI		-5	5	-7		-1	0	
PA	COND ${ }^{1}$.			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	A	Input or I/O to	8 outputs switching	1	5	3	7.5	3	10	ns
		Comb. Output	1 output switching	-	-	-	7	-	-	ns
tco	A	Clock to Outpu		1	4	2	5	2	7	ns
tcf ${ }^{2}$	-	Clock to Feedb	elay	-	3	-	3	-	6	ns
tsu	-	Setup Time, Inp	Feedback before Clock \uparrow	3	-	7	-	10	-	ns
th	-	Hold Time, Inpu	Feedback after Clock \uparrow	0	-	0	-	0	-	ns
	A	Maximum Cloc External Feedb	$\begin{aligned} & \text { quency with } \\ & 1 /(\mathrm{tsu}+\mathrm{tco}) \end{aligned}$	142.8	-	83.3	-	58.8	-	MHz
fmax^{3}	A	Maximum Clock Internal Feedb	quency with (tsu + tcf)	166	-	100	-	62.5	-	MHz
	A	Maximum Clock No Feedback	quency with	166	-	100	-	62.5	-	MHz
twh	-	Clock Pulse Du	, High	3	-	5	-	8	-	ns
twl	-	Clock Pulse Du	, Low	3	-	5	-	8	-	ns
ten	B	Input or I/O to	Enabled	1	6	3	9	3	10	ns
	B	$\overline{\mathrm{OE}}$ to Output E		1	6	2	6	2	10	ns
tdis	C	Input or I/O to	Disabled	1	5	2	9	2	10	ns
	C	$\overline{\mathrm{OE}}$ to Output D		1	5	1.5	6	1.5	10	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these parameters.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{10}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{10}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

Specifications GAL20V8B

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Abstract

Supply voltage V_{cc} -0.5 to +7 V Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Off-state output voltage applied.......... -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$ Ambient Temperature with

\section*{Power Applied} -55 to $125^{\circ} \mathrm{C}$ 1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditionsabove those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature $\left(T_{A}\right)$ 0 to $75^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground \qquad +4.75 to +5.25V

Industrial Devices:

Ambient Temperature $\left(T_{A}\right)$........................... -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS
Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL ${ }^{1}$	Input or I/O Low Leakage Current	OV $\leq \mathrm{VIN}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN}_{\text {¢ }} \leq \mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	Iol = MAX. Vin $=\mathbf{V}$ IL or $\mathbf{V I H}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage	$\mathbf{I o H}=$ MAX. \quad Vin $=\mathbf{V}_{\text {IL }}$ or $\mathbf{V}_{\text {IH }}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	24	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	VCC $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA

COMMERCIAL

ICC	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=3.0 \mathrm{~V} \\ & \mathrm{f}_{\text {toggle }}=15 \mathrm{MHz} \text { Outputs Open } \end{aligned}$	L -7/-10	-	75	115	mA
			L -15/-25	-	75	90	mA
			Q -15/-25	-	45	55	mA

INDUSTRIAL

ICC	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V}$	L-10/-15/-25	-	75	130	mA
		ftoggle $=15 \mathrm{MHz}$ Outputs Open	Q -20/-25	-	45	65	mA

[^3]
Specifications GAL20V8B

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

				COM				COM / IND		IND		COM / IND		
PARAM.	$\begin{aligned} & \text { TEST } \\ & \text { COND'. } \end{aligned}$	DESCRIPTION		-7		-10		-15				-25		UNITS
				MIN.	max.									
tpd	A	Input or I/O to	8 outputs switching	3	7.5	3	10	3	15	3	20	3	25	ns
		Comb. Output	1 output switching	-	7	-	-	-	-	-	-	-	-	ns
tco	A	Clock to Output Delay		2	5	2	7	2	10	2	11	2	12	ns
$\mathbf{t c f}{ }^{2}$	-	Clock to Feedb	k Delay	-	3	-	6	-	8	-	9	-	10	ns
tsu	-	Setup Time, Inp	t or Fdbk before $\mathrm{Clk} \uparrow$	7	-	10	-	12	-	13	-	15	-	ns
th	-	Hold Time, Inpu	or Fdbk after Clk \uparrow	0	-	0	-	0	-	0	-	0	-	ns
fmax^{3}	A	Maximum Clock External Feedb	Frequency with k, 1/(tsu + tco)	83.3	-	58.8	-	45.5	-	41.6	-	37	-	MHz
	A	Maximum Clock Internal Feedb	Frequency with $\mathrm{k}, 1 /(\mathrm{tsu}+\mathrm{tcf})$	100	-	62.5	-	50	-	45.4	-	40	-	MHz
	A	Maximum Clock No Feedback	Frequency with	100	-	62.5	-	62.5	-	50	-	41.7	-	MHz
twh	-	Clock Pulse Duration, High		5	-	8	-	8	-	10	-	12	-	ns
twl	-	Clock Pulse Duration, Low		5	-	8	-	8	-	10	-	12	-	ns
ten	B	Input or I/O to Output Enabled		3	9	3	10	-	15	-	20	-	25	ns
	B	$\overline{\mathrm{OE}}$ to Output E	abled	2	6	2	10	-	15	-	18	-	20	ns
tdis	C	Input or I/O to	tput Disabled	2	9	2	10	-	15	-	20	-	25	ns
	C	$\overline{\mathrm{OE}}$ to Output D	abled	1.5	6	1.5	10	-	15	-	18	-	20	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{1 / \mathrm{O}}$	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{10}=2.0 \mathrm{~V}$

[^4]
Specifications GAL20V8

SWITCHING WAVEFORMS

Combinatorial Output

INPUT or I/O FEEDBACK

COMBINATIONAL OUTPUT

Input or I/O to Output Enable/Disable

CLK

Clock Width

Registered Output

$\overline{\mathrm{OE}}$ to Output Enable/Disable

fmax with Feedback

Specifications GAL20V8

fmax DESCRIPTIONS

fmax with External Feedback $\mathbf{1 / (t s u}+\mathbf{t c o}$)
Note: fmax with external feedback is calculated from measured tsu and tco.

fmax with No Feedback
Note:fmax with no feedback may be less than $1 /(\mathrm{twh}+\mathrm{twl})$. This is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf $=1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to $\mathbf{t c f}+$ tpd.

SWITCHING TEST CONDITIONS

Input Pulse Levels		GND to 3.0V
Input Rise and	GAL20V8B	$2-3 \mathrm{~ns} \mathrm{10} \mathrm{\%-90} \mathrm{\%}$
Fall Times	GAL20V8C	$1.5 \mathrm{~ns} \mathrm{10} \mathrm{\%-90} \mathrm{\%}$
Input Timing Reference Levels	1.5 V	
Output Timing Reference Levels	1.5 V	
Output Load		See Figure

3 -state levels are measured 0.5 V from steady-state active
level.

GAL20V8B Output Load Conditions (see figure)

Test Condition		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
A		200Ω	390Ω	50 pF
B	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
C	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

${ }^{*} C_{L}$ INCLUDES TEST FIXTURE AND PROBE CAPACITANCE

GAL20V8C Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
A		200Ω	200Ω	50 pF
B	Active High	∞	200Ω	50 pF
	Active Low	200Ω	200Ω	50 pF
C	Active High	∞	200Ω	5 pF
	Active Low	200Ω	200Ω	5 pF

Specifications GAL20V8

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL20V8 device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter the checksum.

SECURITY CELL

A security cell is providedin the GAL20V8 devices to preventunauthorized copying of the array patterns. Once programmed,this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programmingthe device, so the original configuration can never be examinedonce this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL20V8 devices are designed with an on-board charge pump to negativelybias the substrate. The negative bias minimizes the potential of latch-up caused by negative input undershoots. Additionally, outputs are designed with n -channel pull-ups instead of the traditional p-channel pull-ups in order to eliminate latch-up due to output overshoots.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice Semiconductorapproved Logic Programmer, available from a number of manufacturers. Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up,line voltage glitches, brown-outs,etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

GAL20V8 devices include circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically.

INPUT BUFFERS

GAL20V8 devices are designed with TTL level compatible input buffers. These buffers have a characteristicallyhigh impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

The GAL20V8 input and I/O pins have built-in active pull-ups. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to another active input, VCC, or Ground. Doing this will tend to improve noise immunity and reduce Icc for the device.

Typical Input Pull-up Characteristic

POWER-UP RESET

Circuitry within the GAL20V8 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s} \mathrm{MAX}$). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typ. $\mathrm{Vref}=3.2 \mathrm{~V}$

Typical Input

Typical Output

Specifications GAL20V8

GAL 20V8C: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Tpd vs Temp

Normalized Tco vs Vcc

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Normalized Tsu vs Temp

Delta Tpd vs \# of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Delta Tco vs Output Loading

Specifications GAL20V8

GAL 20V8C: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Specifications GAL20V8

GAL 20V8B-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Delta Tpd vs \# of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Delta Tco vs Output Loading

Specifications GAL2OV8

GAL 20V8B-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Specifications GAL20V8

GAL 20V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Tpd vs Vcc

Normalized Tpd vs Temp

Normalized Tco vs Vcc

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Normalized Tsu vs Temp

Delta Tpd vs \# of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Delta Tco vs Output Loading

Specifications GAL20V8

GAL 20V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Icc vs Vcc

Delta Icc vs Vin (1 input)

Voh vs loh

Normalized Icc vs Temp

Voh vs loh

Normalized Icc vs Freq.

Input Clamp (Vik)

Copyright © 1996 Lattice Semiconductor Corporation.
E^{2} CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L (Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, InSystem Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter, ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296 US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US, 5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US, $5,353,246$ US, $5,357,156$ US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US, 0194091 EP, $0196771 B 1$ EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC) reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC's standard warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer's product design, software performance, or infringements of patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such applications is prohibited.

```
LATTICE SEMICONDUCTOR CORPORATION
5 5 5 5 \text { Northeast Moore Court}
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com
```


[^0]: Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^1]: 1) Used with Configuration keyword.
 2) Prior to Version 2.0 support.
 3) Supported on Version 1.20 or later.
[^2]: 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
 2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
 3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
[^3]: 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
 2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
 3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
[^4]: *Guaranteed but not 100\% tested.

