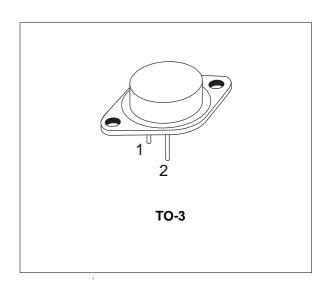
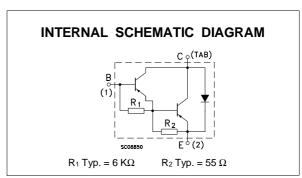


SILICON PNP POWER DARLINGTON TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPE
- PNP DARLINGTON
- HIGH GAIN
- HIGH CURRENT
- HIGH DISSIPATION
- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE


APPLICATIONS


 LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

DESCRIPTION

The 2N6050 is a silicon epitaxial-base PNP transistors in monolithic Darlington configuration mounted in Jedec TO-3 metal case.

It is inteded for use in power linear and low frequency switching applications.

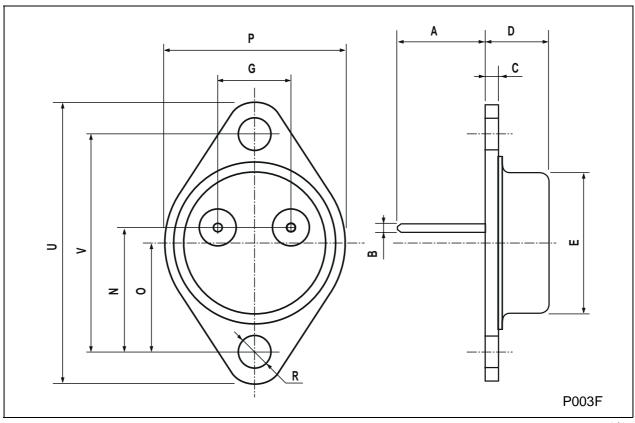
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	-60	V
V _{CEX}	Collector-Emitter Voltage (V _{BE} = -1.5V)	-60	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	-60	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	-5	V
Ic	Collector Current	-12	Α
I _{CM}	Collector Peak Current	-20	Α
I _B	Base Current	-0.2	Α
P _{tot}	Total Dissipation at T _c ≤ 25 °C	150	W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	200	°C

June 1997 1/4

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	3.12	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	83.3	°C/W


ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector Cut-off Current (V _{BE} = -1.5V)	V_{CE} = rated V_{CEO} V_{CE} = rated V_{CEO} T_c = 125 $^{\circ}$ C			0.1 0.5	mA mA
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CE} = rated V _{CBO}			0.1	mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V_{CE} = rated V_{CEO}			0.1	mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			2	mA
$V_{\text{CEO(sus)}}*$	Collector-Emitter Sustaining Voltage	I _C = 100 mA	80			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_C = 2 A$ $I_B = 8 mA$ $I_C = 4 A$ $I_B = 40 mA$			2 3	V V
$V_{BE(sat)^*}$	Base-Emitter Saturation Voltage	$I_C = 4 \text{ A}$ $I_B = 40 \text{ mA}$			4	V
$V_{BE}*$	Base-Emitter Voltage	I _C = 2 A V _{CE} = 3 V			2.8	V
h _{FE} *	DC Current Gain	I _C = 0.5 A V _{CE} = 3 V I _C = 2 A V _{CE} = 3 V I _C = 4 A V _{CE} = 3 V	500 750 100		15000	
h _{fe}	Small Signal Current Gain	I _C = 0.75 A V _{CE} = 10 V f = 1KHz	25			
С _{СВО}	Collector Base Capacitance	$I_E = 0$ $V_{CB} = 10$ V $f = 1MHz$ for NPN types for PNP types			100 200	pF pF

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

TO-3 MECHANICAL DATA

DIM.	mm			inch			
Ziiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	11.00		13.10	0.433		0.516	
В	0.97		1.15	0.038		0.045	
С	1.50		1.65	0.059		0.065	
D	8.32		8.92	0.327		0.351	
E	19.00		20.00	0.748		0.787	
G	10.70		11.10	0.421		0.437	
N	16.50		17.20	0.649		0.677	
Р	25.00		26.00	0.984		1.023	
R	4.00		4.09	0.157		0.161	
U	38.50		39.30	1.515		1.547	
V	30.00		30.30	1.187		1.193	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

