2SD755, 2SD756, 2SD756A

Silicon NPN Epitaxial

HITACHI

Application

- Low frequency high voltage amplifier
- Complementary pair with 2SB715, 2SB716 and 2SB716A

Outline

1. Emitter
2. Collector
3. Base
2SD755, 2SD756, 2SD756A

Absolute Maximum Ratings (Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>2SD755</th>
<th>2SD756</th>
<th>2SD756A</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to base voltage</td>
<td>V<sub>CBO</sub></td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>V</td>
</tr>
<tr>
<td>Collector to emitter voltage</td>
<td>V<sub>CEO</sub></td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>V</td>
</tr>
<tr>
<td>Emitter to base voltage</td>
<td>V<sub>EBO</sub></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I<sub>C</sub></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Collector power dissipation</td>
<td>P<sub>C</sub></td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T<sub>j</sub></td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T<sub>stg</sub></td>
<td>−55 to +150</td>
<td>−55 to +150</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics (Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>2SD755</th>
<th>2SD756</th>
<th>2SD756A</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to emitter breakdown voltage</td>
<td>V<sub>(BRV)CEO</sub></td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>V</td>
<td>I<sub>C</sub> = 1 mA, R<sub>BE</sub> = ∞</td>
</tr>
<tr>
<td>Collector to base breakdown voltage</td>
<td>V<sub>(BRV)CBO</sub></td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>V</td>
<td>I<sub>C</sub> = 10 μA, I<sub>E</sub> = 0</td>
</tr>
<tr>
<td>Collector cutoff current</td>
<td>I<sub>CBO</sub></td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>0.5</td>
<td>μA V<sub>CB</sub> = 100 V, I<sub>E</sub> = 0</td>
</tr>
<tr>
<td>DC current transfer ratio h<sub>FE1</sub></td>
<td>250</td>
<td>1200</td>
<td>250</td>
<td>800</td>
<td>500</td>
<td>V<sub>CE</sub> = 12 V, I<sub>C</sub> = 2 mA</td>
</tr>
<tr>
<td></td>
<td>h<sub>FE2</sub></td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>V<sub>CE</sub> = 12 V, I<sub>C</sub> = 10 mA</td>
</tr>
<tr>
<td>Base to emitter voltage</td>
<td>V<sub>BE</sub></td>
<td>—</td>
<td>0.75</td>
<td>—</td>
<td>0.75</td>
<td>V V<sub>CE</sub> = 12 V, I<sub>C</sub> = 2 mA</td>
</tr>
<tr>
<td>Collector to emitter saturation voltage</td>
<td>V<sub>CE(sat)</sub></td>
<td>—</td>
<td>0.2</td>
<td>—</td>
<td>0.2</td>
<td>V I<sub>C</sub> = 10 mA, I<sub>E</sub> = 1 mA</td>
</tr>
<tr>
<td>Gain bandwidth product</td>
<td>f<sub>T</sub></td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>350</td>
<td>MHz V<sub>CE</sub> = 12 V, I<sub>C</sub> = 5 mA</td>
</tr>
<tr>
<td>Collector output capacitance</td>
<td>C<sub>Ob</sub></td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>pF V<sub>CB</sub> = 25 V, I<sub>E</sub> = 0, f = 1 MHz</td>
</tr>
</tbody>
</table>

Note: 1. The 2SD755, 2SD756 and 2SD756A are grouped by h_{FE1} as follows.

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SD755</td>
<td>250 to 500</td>
<td>400 to 800</td>
</tr>
<tr>
<td>2SD756</td>
<td>250 to 500</td>
<td>400 to 800</td>
</tr>
<tr>
<td>2SD756A</td>
<td>250 to 500</td>
<td>—</td>
</tr>
</tbody>
</table>

HITACHI
2SD755, 2SD756, 2SD756A

Maximum Collector Dissipation Curve

Typical Output Characteristics

Collector Power Dissipation P_c (mW)

Collector Current I_C (mA)

Collector to Emitter Voltage V_{CE} (V)

DC Current Transfer Ratio vs. Collector Current

Typical Transfer Characteristics

DC Current Transfer Ratio h_{FE}

Typical Output Characteristics

Collector Current I_C (mA)

Collector to Emitter Voltage V_{CE} (V)

DC Current Transfer Ratio h_{FE}

Typical Transfer Characteristics

Collector Current I_C (mA)

Collector to Emitter Voltage V_{BE} (V)

V $V_{CE} = 12$ V

Ta = 100°C 75 50 25 0

–25

0

DC Current Transfer Ratio h_{FE}

0.1 0.3 0.5 0.7 0.9

0.01 0.03 0.05 0.07 0.09

0.2 0.4 0.6 0.8

0.01 0.03 0.05 0.07 0.09

0.2 0.4 0.6 0.8

HITACHI
Gain Bandwidth Product vs. Collector Current

Collector Output Capacitance vs. Collector to Base Voltage

Area of Safe Operation

V_{CE} = 12 V

Collector to Emitter Voltage V_{CE} (V)

Collector Current I_{C} (mA)

Collector Output Capacitance C_{ob} (pF)

Collector to Base Voltage V_{CB} (V)

Collector Current I_{C} (mA)

Collector to Emitter Voltage V_{CE} (V)

2SD755, 2SD756, 2SD756A

Gain Bandwidth Product vs. Collector Current

Collector Current I_{C} (mA)

0.01 0.03 0.1 0.3 1.0 3 10 30

Gain Bandwidth Product f_{T} (MHz)

V_{CE} = 12 V

Collector Output Capacitance vs. Collector to Base Voltage

Collector to Base Voltage V_{CB} (V)

Collector Output Capacitance C_{ob} (pF)

1 3 10 30 100

0.5

1

2

2

2

f = 1 MHz

I_{E} = 0

Area of Safe Operation

Collector to Emitter Voltage V_{CE} (V)

Collector Current I_{C} (mA)

100 50 20 10 5 2 1

5 10 20 50 100 200 500

1 5 10 20 50 100 200 500

Ta = 25°C

P_{C} = 750 mW

(50 V, 15 mA)

(100 V, 6 mA)

(120 V, 5 mA)

(140 V, 4 mA)

2SD755

2SD756

2SD756A

(120 V, 5 mA)

(140 V, 4 mA)
Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.