July 1996-2

FEATURES

 Low-Sine Wave Distortion 0.5%, Typical
 Excellent Temperature Stability 20ppm/°C, Typical

Wide Sweep Range
 Low-Supply Sensitivity
 2000:1, Typical
 0.01%V, Typical

Linear Amplitude Modulation

TTL Compatible FSK Controls

Wide Supply Range 10V to 26VAdjustable Duty Cycle 1% TO 99%

APPLICATIONS

- Waveform Generation
- Sweep Generation
- AM/FM Generation
- V/F Conversion
- FSK Generation
- Phase-Locked Loops (VCO)

GENERAL DESCRIPTION

The XR-2206 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.01Hz to more than 1MHz.

The circuit is ideally suited for communications, instrumentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a typical drift specification of 20ppm/°C. The oscillator frequency can be linearly swept over a 2000:1 frequency range with an external control voltage, while maintaining low distortion.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
XR-2206M	CDIP	-55°C to +125°C
XR-2206P	PDIP	0°C to +70°C
XR-2206CP	PDIP	0°C to +70°C
XR-2206D	SOIC (JEDEC)	0°C to +70°C Only in Wide Body .3"

/////////

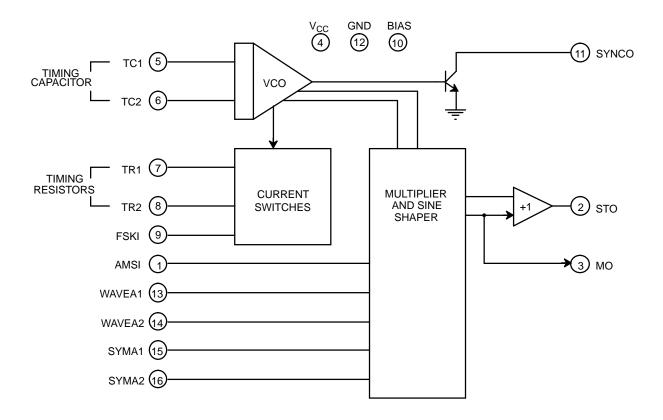


Figure 1. XR-2206 Block Diagram.

PIN DESCRIPTION

Pin#	Symbol	Туре	Description			
1	AMSI	I	Amplitude Modulating Signal Input.			
2	STO	0	Sine or Triangle Wave Output.			
3	MO	0	Multiplier Output.			
4	V _{CC}	-	Positive Power Supply.			
5	TC1	ı	Timing Capacitor Input.			
6	TC2	ı	Timing Capacitor Input.			
7	TR1	0	Timing Resistor 1 Output.			
8	TR2	0	Timing Resistor 2 Output.			
9	FSKI	ı	Frequency Shift Keying Input.			
10	BIAS	0	Internal Voltage Reference.			
11	SYNCO	0	Sync Output. This output is a open collector and needs a pull up resistor to V _{CC} .			
12	GND	-	Ground pin.			
13	WAVEA1	ı	Wave Form Adjust Input 1.			
14	WAVEA2	ı	Wave Form Adjust Input 2.			
15	SYMA1	ı	Wave Symetry Adjust 1.			
16	SYMA2	I	Wave Symetry Adjust 2.			

DC ELECTRICAL CHARACTERISTICS

Test Conditions: Test Circuit of Figure 2. Vcc = 12V, $T_A = 25^{\circ}C$, $C = 0.01\mu F$, $R_1 = 100k\Omega$, $R_2 = 10k\Omega$, $R_3 = 25k\Omega$ unless otherwise specified. S_1 open for triangle, closed for sine wave.

	>	(R-2206N	1		XR-2206C			
PARAMETERS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
GENERAL CHARACTERISTIC	S			•			•	•
Single Supply Voltage	10		26	10		26	V	
Split-Supply Voltage	<u>+</u> 5		<u>+</u> 13	<u>+</u> 5		<u>+</u> 13	V	
Supply Current		12	17		14	20	mA	$R_1 \geq 10k\Omega$
OSCILLATOR SECTION	•		•	•	•	•	•	
Max. Operating Frequency	0.5	1		0.5	1		MHz	C = 1000pF, $R_1 = 1k\Omega$
Lowest Practical Frequency		0.01			0.01		Hz	$C = 50\mu F$, $R_1 = 2M\Omega$
Frequency Accuracy		<u>+</u> 1	<u>+</u> 4		<u>+</u> 2		% of f _o	$f_0 = 1/R_1C$
Temperature Stability Frequency		<u>+</u> 10	<u>+</u> 50		<u>+</u> 20		ppm/°C	0° C \leq T _A \leq 70° C R ₁ = R ₂ = 20 k Ω
Sine Wave Amplitude Stability		4800			4800		ppm/°C	See Note 2.
Supply Sensitivity		0.01	0.1		0.01		%/V	$V_{LOW} = 10V, V_{HIGH} = 20V,$ $R_1 = R_2 = 20k\Omega$
Sweep Range	1000:1	2000:1			2000:1		$f_H = f_L$	$f_H @ R_1 = 1k\Omega$ $f_L @ R_1 = 2M\Omega$
Sweep Linearity	•			•	•		,	
10:1 Sweep		2			2		%	$f_L = 1kHz, f_H = 10kHz$
1000:1 Sweep		8			8		%	f _L = 100Hz, f _H = 100kHz
FM Distortion		0.1			0.1		%	±10% Deviation
Recommended Timing Components							•	
Timing Capacitor: C	0.001		100	0.001		100	μF	Figure 5.
Timing Resistors: R ₁ & R ₂	1		2000	1		2000	kΩ	
Triangle Sine Wave Output	-		-	-	•		-	See Note 1, Figure 3.
Triangle Amplitude		160			160		mV/kΩ	Figure 2., S ₁ Open
Sine Wave Amplitude	40	60	80		60		mV/kΩ	Figure 2., S ₁ Closed
Max. Output Swing		6			6		Vp-p	
Output Impedance		600			600		Ω	
Triangle Linearity		1			1		%	
Amplitude Stability		0.5			0.5		dB	For 1000:1 Sweep
Sine Wave Distortion	•	•	•	-	-	•	-	
Without Adjustment		2.5			2.5		%	$R_1 = 30k\Omega$
With Adjustment		0.4	1.0		0.5	1.5	%	See Figure 7. and Figure 8.

Note: Bold face parameters are covered by production test and guaranteed over operating temperature range.

)	(R-2206N	Л)	KR-22060)			
PARAMETERS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS	
Amplitude Modulation	•			•			•		
Input Impedance	50	100		50	100		kΩ		
Modulation Range		100			100		%		
Carrier Suppression		55			55		dB		
Linearity		2			2		%	For 95% modulation	
Square-Wave Output	•	•	•	•	•	•		•	
Amplitude		12			12		Vp-p	Measured at Pin 11.	
Rise Time		250			250		nsec	C _L = 10pF	
Fall Time		50			50		nsec	C _L = 10pF	
Saturation Voltage		0.2	0.4		0.2	0.6	V	$I_L = 2mA$	
Leakage Current		0.1	20		0.1	100	μΑ	V _{CC} = 26V	
FSK Keying Level (Pin 9)	0.8	1.4	2.4	0.8	1.4	2.4	V	See section on circuit controls	
Reference Bypass Voltage	2.9	3.1	3.3	2.5	3	3.5	V	Measured at Pin 10.	

Note 1: Output amplitude is directly proportional to the resistance, R_3 , on Pin 3. See Figure 3. **Note 2:** For maximum amplitude stability, R_3 should be a positive temperature coefficient resistor.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Power Supply	Total Timing Current 6mA
Power Dissipation	Storage Temperature65°C to +150°C
Derate Above 25°C 5mW/°C	Clorage remperature remarks as a construction

SYSTEM DESCRIPTION

The XR-2206 is comprised of four functional blocks; a voltage-controlled oscillator (VCO), an analog multiplier and sine-shaper; a unity gain buffer amplifier; and a set of current switches.

The VCO produces an output frequency proportional to an input current, which is set by a resistor from the timing terminals to ground. With two timing pins, two discrete output frequencies can be independently produced for FSK generation applications by using the FSK input control pin. This input controls the current switches which select one of the timing resistor currents, and routes it to the VCO.

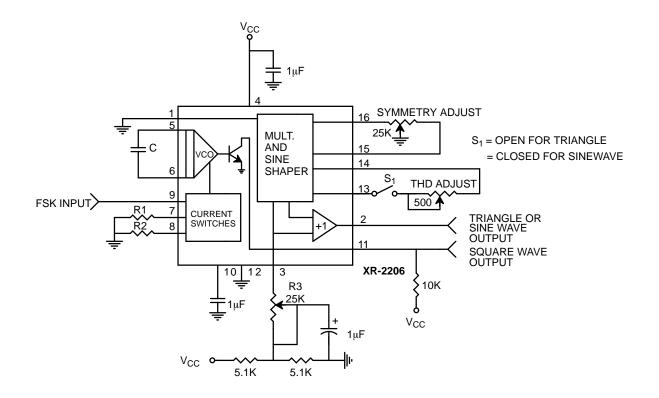


Figure 2. Basic Test Circuit.

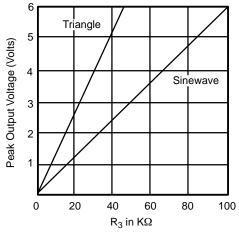


Figure 3. Output Amplitude as a Function of the Resistor, R3, at Pin 3.

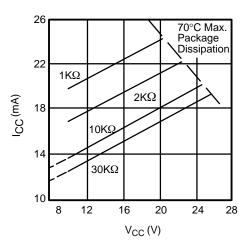


Figure 4. Supply Current vs Supply Voltage, Timing, R.

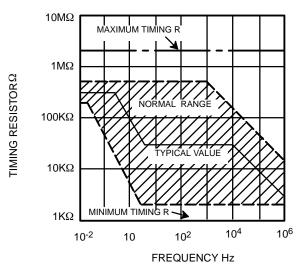


Figure 5. R versus Oscillation Frequency.

Figure 6. Normalized Output Amplitude versus DC Bias at AM Input (Pin 1)

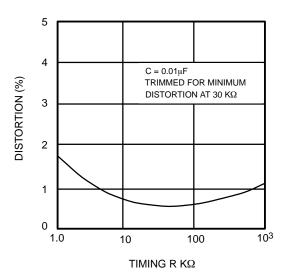


Figure 7. Trimmed Distortion versus Timing Resistor.

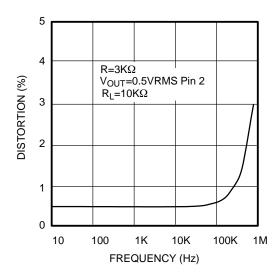
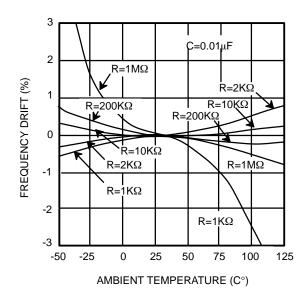



Figure 8. Sine Wave Distortion versus
Operating Frequency with
Timing Capacitors Varied.

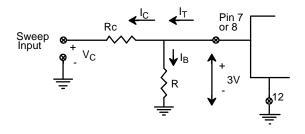


Figure 9. Frequency Drift versus Temperature.

Figure 10. Circuit Connection for Frequency Sweep.

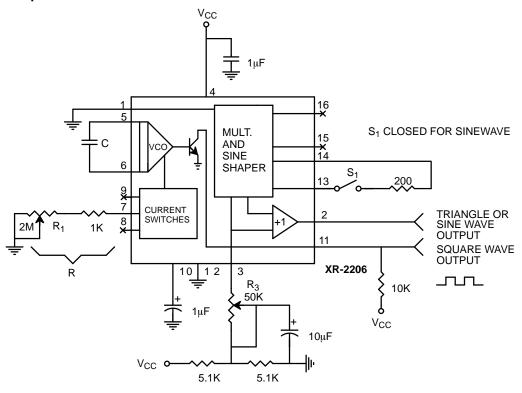
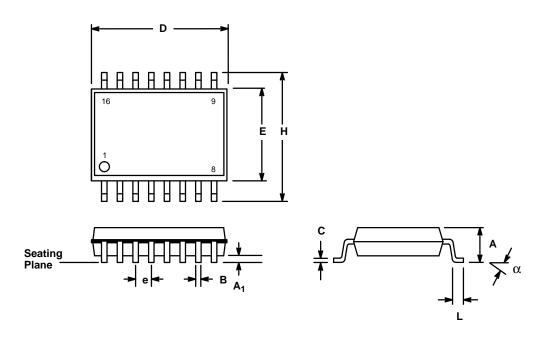



Figure 11. Circuit tor Sine Wave Generation without External Adjustment. (See *Figure 3*. for Choice of R₃)

16 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC)

Rev. 1.00

	INC	HES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.093	0.104	2.35	2.65
A ₁	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.009	0.013	0.23	0.32
D	0.398	0.413	10.10	10.50
Е	0.291	0.299	7.40	7.60
е	0.0	50 BSC	1.2	7 BSC
H	0.394	0.419	10.00	10.65
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°

Note: The control dimension is the millimeter column

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1972 EXAR Corporation

Datasheet July 1996

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

