The circuit presented here uses bicolour LEDs to generate a display in three colours, namely, red, green, and yellowish green. Transistors T1 through T20 form a grid to which common-cathode bicolour LEDs (LED1 through LED10) are connected. Transistors T1 through T10 have their collector terminals connected to the emitter of transistor T21. Similarly, transistors T11 through T20 have their collector terminals connected to the emitter of transistor T22.

y transistor T22. IC1 and IC2 are decade counters. Clock pulse to IC1 is provided by the oscillator circuit comprising NOR gates N1 and N2. The outputs of IC1 advance sequentially with each clock. (Any other source of squarewave pulses also serves the purpose.) IC2 is used to select the mode of display. Clock input pin 14 of IC2 is connected to Q9 output of IC1. Thus IC2 receives one pulse after every ten pulses received by IC1. When the circuit is switched on, Q0 output of IC2 is active high. Thus transistor T21 gets forward biased via diode D3 and it conducts to extend positive supply to transistors T1 through T10. Transistors T1 through T10 are forward biased sequentially by Q0 through Q9 outputs of IC1, i.e. at a time only one of these ten transistors is forward biased (on). Thus only red LED parts of bicolour LEDs light up sequentially. (Transistor T22 is not conducting at this moment.) When red LED part of LED10 glows, IC2 receives a clock pulse and its Q1 output goes high. Transistor T21 still conducts, as it is forward biased through diode D6, and next again via diode D5. Thus red LEDs complete two more glowing sequences

Leave Comment

characters left:

New Circuits