Electronic locks 555 monostable circuit diagram

Child lock voltage comparator 555 monostable circuit, a counter, JK flip-flop, UPS power supply design digital logic circuit, electronic door control, and a variety of addition
Electronic locks 555 monostable circuit diagram - schematic

al circuitry to ensure the safety circuit can work, a high safety factor. Circuit for modifying the password only 16, but because others do not know-digit password, but also request within the specified time to unlock a certain order, so little chance of unlocking others. Here people feel safer, more convenient and more comfortable new electronic lock design 555 monostable Circuit. With the improvement of peoples living standards, how to achieve family security problem becomes particularly prominent, the traditional mechanical locks because of its simple structure, prizing common occurrence, electronic lock because of its high security, flexibility of use good high safety factor, the majority of users of all ages. When designing this project contemplates two options: one is the single-chip control program for AT89C2051 as the core; the other is for digital logic control program 74LS112 dual JK flip-flops. Taking into account the principle of single-chip solutions complex and debugging more complicated, this article uses the latter scheme. Design ideas A total of 9 user input keys, of which only four are valid password key, the other keys are interference, when the key is pressed interference, keyboard input circuit is automatically cleared, invalid password previously entered, you need to re-enter; if time users to enter passwords more than 40 seconds (under normal circumstances, users will not exceed 40 seconds, and if users find it inconvenient, you can also modify) the circuit will alarm 80 seconds if the alarm circuit three times in a row, the circuit will lock the keyboard for 5 minutes, to prevent others the illegal operation. The overall block diagram When someone approached the door, touch the end TP (TP end fixed on the keyboard, and its very high sensitivity to ensure reliable trigger circuit), due to the bodys own electrical tape to make IC10 2 feet appear low, so that the IC10 state overturns, its 3 feet high output, T5 is turned on (by R12 control T1 base current), its collector connected to the yellow light emitting diode D3, represents the electronic lock is now on standby, T6 off, C4 start by R14 (charging time is 40 seconds, this time for the user to enter time password that the user enter the password was not more than 40 seconds, otherwise the circuit began to alarm, since users often enter a password, and you know the password, the general password the time is not more than 40 seconds), IC2 start entry delay of 40 seconds status. Start alarm: when the user enters an incorrect password or a password longer than 40 seconds, and 2 feet of potential IC11 decreases as the charging of C4, when the potential drops to 1/3Vcc (ie the end of the time delay of 40 seconds), 3 pin goes high (when delay is low), by making R15 (R15 is to limit the effect of the conduction current T7 prevent overcurrent burned transistor) T7 is turned on and its collector connected to the red-light emission above diode D4 lights to indicate the current state of alarm, T8 also will be turned on, the buzzer sounding, so cowardly thief of life, to achieve the alarm. Stop Alarm: When you reach 80 seconds alarm time, IC10 6,7 feet to the discharge end of the capacitor C5, IC10 3 feet into the low level, T5 deadline, T6 is turned on, forcing the circuit is in steady state mandatory, IC11 3 feet output low, T7, T8 is turned off to stop the buzzer alarm; or enter the correct password, there are unlocking circuit T10 collector output to clear the alarm signal to the T12 (PNP), T12 turned, forcing the T7-based extreme low, disarm the alarm signal.

Leave Comment

characters left:

New Circuits