Second-Order Audio Filter Performs Multiple Functions


Posted on Feb 5, 2014

The second-order multipurpose filter described here can perform as a low-pass, bandpass, high-pass, or notch filter at audio frequencies. What makes this filter unique is that all of its characteristics can be varied independently with potentiometers. In basic filters, only one k value is non-zero. Figure 1`s circuit includes the three basic types


Second-Order Audio Filter Performs Multiple Functions
Click here to download the full size of the above Circuit.

of filters. The characteristic frequency, Q value, and transfer gains are: When resistors R3, R4, and R8 have the same value, the parenthetical expressions are valid. R1 and R2 cause the characteristic frequency to change independently. To independently vary the Q value, R6 is adjusted. All of the gains change when R5 is modified. There are three useful outputs in the circuits. They are low-pass, high-pass, and bandpass outputs. In the circuit diagram, these are marked with abbreviations LP, HP, and BP. Replacing resistor R5 with the circuit in Figure 2 makes the gain adjustable. This method can also be used with the Q value. It`s possible to achieve adjustability by replacing resistor R6 with Figure 2`s circuit. The characteristic frequency adjustment is more complicated. To keep the adjustments independent, resistors R1 and R2 should be adjusted at the same time. This can be accomplished using the dual potentiometer as demonstrated in Figure 3. Although the pots are linear, the adjustment is logarithmic due to the virtual ground at the op amp`s negative input. The component values are selected so that the characteristics dependent on the potentiometer rotation follow Table 1. It must be emphasized that all the adjustments are independent. Gain adjustment has no effect on Q value or frequency. This is true for the Q value and characteristic frequency adjustments as well. There are several other types of filters that can...




Leave Comment

characters left:

Related Circuits

  • New Circuits

    .

     


    Popular Circuits

    Electronic Canary
    What determines the transmit frequency in this 555-based transmitter
    Bipolar transistor biasing
    FAN7710 Ballast Control circuit design
    TRIAC Switch To Control High-Voltage Devices
    2 channel RF remote control
    Shay Tips
    Door touch switch circuit (CD4069) schematic



    Top