Photocell Amplifier


Posted on Feb 12, 2013

The output of the amplifier is to be measured on a digital voltmeter. Besides being able to accept 20 na to 200 micro amps and output voltages that range form 100 mv to 2 or 3 volts, the amplifier needed to have a low input resistance so the diode could be run at or near zero bias so that its output would be a linear function of light on the photocell. It also has to have plenty of connectors. Along the bottom of the board in the image above, from left to right, are a power input connector because it would use an isolated unregulated DC power supply that is sometimes used for other things, a voltage output connector so that its output could be plugged into a digital voltmeter, and an input connector so that it can accept current from a variety of photodiodes.


Photocell Amplifier
Click here to download the full size of the above Circuit.

Starting with the power supply. An input voltage of 12 to 16 volts DC is regulated to + 8 volts. R1 assures that a minimum of 10 milliamps flows through the 1N5227, 3.6 volt Zener diode. All together, this makes approximately 8.6 volts. This would have been simpler with a 7808 regulator, and a low power version of the regulator would have been plenty sufficient, but one works with what one has on hand. The 8 volts is split by R2 and R3 to produce a ground reference voltage at half the regulated supply voltage. This results in power to the opamp of +4 volts and -4 volts. Very little current flows between the power positive and negative rails, so U1A, which provides a low impedance ground reference, is not really needed, but the opamps came two to a package, and not having to pay much attention to the effects power supply current returning through the ground made life a little simpler, so I went ahead and used U1A in this role. The photocell is connected to the amplifier through approximately two meters of Belden RG-174/U miniature coax cable. All I want to measure is the average current so the current from the photocell is filtered by C3 to reduce the amount of hum and other modulation of the current. The capacitor, along with R4 form a 20 Hz low single pole low pass filter which after examination of the output on a scope, is adequate for my needs. The actual amplification is done by the marvelous TLC27l2 opamp....




Leave Comment

characters left:

New Circuits

.

 


Popular Circuits

Audio Power Limiter
Ultrasonic switch circuit
The Digital Sketchbook Arduino Frequency Measurement Library
Worlds first Arduino flashlight ships soon
motorcycle low voltage warning
WSH412 Hall Effect Sensor IC With Thermal Lock Protection And Auto Restart Function
ir remote circuit
1 mA CURRENT SINKl
Digital Lock Project



Top