I have been given the following circuit diagram and have been asked to compute R2 and RC such that, at the Q-point, the circuit will behave as follows: VCE=5V VBE=0.7V IC=2mA β=100(where β=ic/ib)
Click here to download the full size of the above Circuit.
There are many places we can begin looking at this. We know that the collector current is 2 mA, and that VCE is 5V. Since the emitter is at ground, the collector must be at 5V, and so the voltage across RC is therefore 10V: the difference between 5V and 15V. So RC must be 10V/.002A=5KΩ. Next, R2 and R1 which span a voltage from −15V to +5V must form a voltage divider such that the top of R1 is at 0.7V (VBE). Hint: the voltage divider spans a range of 20V, and the 0.7V transistor base voltage is 15.7V above the bottom of the voltage divider. This approach assumes that we can ignore the base current because it is small. Often when analyzing transistor circuits we can do that, but not in this case because R1 is such a high resistor. The voltage divider is not "stiff" at all with regard to the resistance in the base circuit of the transistor (which has no emitter resistor at all). A more exact answer requires that we account for the base current. The transistor is carrying only 2mA of current, and so is nowhere near hard saturation, and so the base current is only 0.02 mA, or 20 micro-Amperes (2mA divided by β). Determine how much current is flowing through R1 from its resistance, and 15.7 voltage. The current flowing through R2 is the sum of the transistor base current (.02 mA) and the current through R1. Knowing the current through R2 and the voltage across it, we can calculate its resistance.
This project fits more for custom made battery casing that can have more space to hide things inside. This switch with few alterations can be used for any other project as well but is designed based on e-bike needs! This project use a clever functionality of....
The circuit described here uses ultrasonic oscillations and operates based on the propagation velocity of these oscillations in the air. Thus, we can easily determine the distance of two points if the time within which the wave travels this distance is....
Sometimes the precious metals are hidden too deep and are not detected except with complicated devices. In many cases, however, small pieces of precious metal buried near the surface can be detected by relatively simple means. Everyone is very attractive to....
Many times for various reasons we forget or can not water the plants that we have in our homes. And many humidity sensors units just notify us with a beeping sound or with a flashing light, that the pot needs watering. But what if we are away from home? This....
The principle behind a metal detector is really very simple. Proof of this is the circuit that follows, in which it proves that the construction of a metal detector can be done in the minute, with few components that we find very easily everywhere. With the....
The sub-harmonic bass generator is a sound producing unit for guitars. The sound it produces looks very much like that of the bass guitar. The octave generator is sometimes quite unusual since it does not produce any of the usual ways of coloring the sound,....
In the past the sounding (sea bottom measurement) was done with the "bullet", that is, with a heavy lead object that the seamen plucked into the sea hung from a calibrated rope. As soon as the "bullet" reached the bottom, the depth appeared directly from the....
This Amplifier was designed to have the following specifications: Distortion less than 0.1% at full power of 100W even at 20KHz. Power has to be attributed to an extended bandwidth. The output transistors must be protected against short circuits. The power....
A series of LEDs serve to alert the gardener when plants need water. Using two conventional digital integrated LEDs and a series of LEDs, we make a very useful device for gardening. The device detects the amount of water in the pot and alerts the grower.....
characters left: