The construction of the loop should be considered with the following rule: the ratio of loop area to loop inductance should be maximized (see the Appendix) . That automatically means that circular shape with 1 turn is the best choice. The practical diameter is around 1 m with the conductor as fat as possible. The material might be copper or aluminum – actually the loop Q-factor is not important. The important factor is the low loop inductance. 1m diam. loop made from aluminum wire 3.4 mm gives inductance around 4 uH. I have used also 0.9 m diam. loop made from double foil FR-4 PCB material (Fig.3) with 1.5mm thickness and 20 mm width which reduces the loop inductance to 3 uH.
The best results can be obtained with “parallel” and “crossed parallel ” loops (CP loop, see Fig. 5 , 13,14 , Appendix I,II). For urban locations where the noise level is much higher smaller loops can be used. This antenna will be used outdoors and the amplifier is placed in a small, IP55 secured, plastic box (Fig.2).
These boxes are widely available on the market - any similar one can be used. The connecting cable between the antenna and receiver (RX) is shielded LAN cable FTP type with 4 twisted pairs. The signal and power use separate pairs. RJ45 standard connectors are used. These connectors are very cheap and reliable but the RJ connector should to be placed inside the box since it is not waterproof.
There is no need for the box to be shielded – it is supposed that the antenna will be mounted at least several meters away from electrical equipment and direct near field influence to amplifier board will be reduced. The FTP shield must be connected to RX ground (chassis), but at the far (antenna) end should be left floating.
The power supply (PS) ground also is floating if independent DC supply is used. Do not use switching PS - it will be very difficult to remove its noise.